
Foundations of applied arithmetic

Eric Johannesson

November 14, 2024

1 Preliminaries

Consider the following putative problem of applied arithmetic:

Example 1.1. Suppose that (a) there is exactly one apple in a basket on Monday, that
(b) exactly two apples are added to the basket on Tuesday, and that (c) no apples are
removed from the basket between Monday and Tuesday. How many apples are there in
the basket on Tuesday?

Actually, this is just a logical problem, at least in the following sense. Let M and
T be unary predicates, whose intended interpretations are being an apple in the basket
on Monday and being an apple in the basket on Tuesday, respectively. The assumptions
may then be expressed in first-order logic:

(a) ∃x(Mx ∧ ∀y(My → x = y))

(b) ∃x∃y(x ̸= y ∧ ¬Mx ∧ Tx ∧ ¬My ∧ Ty ∧ ∀z(¬Mz ∧ Tz → x = z ∨ y = z))

(c) ¬∃x(Mx ∧ ¬Tx)

Moreover, the problem may be solved by logically deriving the answer, namely that there
are exactly three apples in the basket on Tuesday:

∃x∃y∃z(x ̸= y ∧ x ̸= z ∧ y ̸= z ∧ Tx ∧ Ty ∧ Tz ∧ ∀u(Tu→ x = u ∨ y = u ∨ z = u))

No arithmetic is required! Nevertheless, most people will assume that there is an intimate
connection between this problem and the genuinely arithmetical problem of determining
the sum of 1 and 2. That connection is probably perceived to be even stronger in the
case of our next example:

Example 1.2. Suppose that (a) the number of apples in the basket on Monday is 1, that
(b) the number of apples added to the basket on Tuesday is 2, and that (c) the number of
apples removed from the basket between Monday and Tuesday is 0. What is the number
of apples in the basket on Tuesday?

For a natural formalization of our second problem, we may extend the syntax of
first-order logic with a term-forming variable-binding operator #: for any variable x and
formula φ, we declare that #xφ is a term with the same free variable occurrences as φ,

1

except for those of x, which are bound by term’s first occurrence of #. Although the
intended interpretation of #xφ shall be the number of x:s such that φ, we assume only
that the logical rules of inference apply to it just as they apply to any other term. If we
extend our vocabulary with individual constants 0, 1, 2, 3, etc., the assumptions may be
expressed as follows:

(a) #xMx = 1

(b) #x(¬Mx ∧ Tx) = 2

(c) #x(Mx ∧ ¬Tx) = 0

But these assumptions do not logically entail the answer, namely that the number of
apples in the basket on Tuesday is 3:

#xTx = 3

As we shall see, given that the classical rules of inference apply to #-terms just as they
apply to any other terms, one can find an interpretation of our formal language (including
the #-terms) consistent with the rules of inference under which the assumptions (a) – (c)
are true but ‘#xTx = 3’ is false. In order to logically derive the answer, we need to make
some further assumptions. But a pure theory of arithmetic (one that only talks about
natural numbers; for a precise definition, see Definition 2.3 below) will not help, at least
not by itself (for a proof of this claim, see Remark 3.2 below). Assuming, for instance,
that 1 + 2 = 3, we still only get

#xMx+#x(¬Mx ∧ Tx) = 3

What we need, in addition, are assumptions allowing us to derive things like

#xMx+#x(¬Mx ∧ Tx) = #xTx

What might these assumptions be?
Before we start making suggestions, we first need to acknowledge the possibility that

not all #-terms refer to natural numbers. Consider, for instance, the term #x(x = x). If
there are infinitely many things, the numbers of things that are self-identical will not be
a natural number.

Secondly, we need some idea of what a pure theory of arithmetic might look like. Let
N be a unary predicate whose intended interpretation is being a natural number, and
consider the following theory of pure arithmetic in the vocabulary {N, 0, s,+,×}:

Pure Peano Arithmetic:

1. N0

2. ∀x(Nx→ Ns(x))

3. ∀x(Nx→ s(x) ̸= 0)

4. ∀x∀y(Nx ∧Ny ∧ s(x) = s(y) → x = y)

5. ∀x∀y(Nx ∧Ny → N(x+ y))

2

6. ∀x(Nx→ x+ 0 = x)

7. ∀x∀y(Nx ∧Ny → x+ s(y) = s(x+ y))

8. ∀x∀x(Nx ∧Ny → N(x× y))

9. ∀x∀y(Nx ∧Ny → x× 0 = 0)

10. ∀x∀y(Nx ∧Ny → x× s(y) = s(x× y) + x)

11. φ(0) ∧ ∀x(Nx→ (φ(x) → φ(s(x)))) → ∀x(Nx→ φ(x))

Let us call it PAN , for short, and let us refer to its i:th axiom as PAN(i). Moreover, for
each natural number n, let us define a unique term n in our formal language intended to
refer to that number (its numeral, as it were). We do this recursively:

0 = 0

n+ 1 = s(n)

The assumptions of our second example can be reformulated accordingly:

(a) #xMx = 1

(b) #x(¬Mx ∧ Tx) = 2

(c) #x(Mx ∧ ¬Tx) = 0

Now, it is easy to show that
PAN ⊢ 1 + 2 = 3

Hence, assumptions (a)–(c) and PAN jointly entail

#xMx+#x(¬Mx ∧ Tx) = 3

But we still cannot derive the solution to our problem, which is #Tx = 3. What we
need, in addition, are assumptions allowing us to derive things like

#xMx+#x(¬Mx ∧ Tx) = #xTx

So, again, what might these assumptions be? Here are some obvious candidates:

Extensionality: ∀x(φ↔ ψ) → #xφ = #xψ

Conjunctive comprehension: N#xφ→ N#x(φ ∧ ψ)

Disjunctive comprehension: N#xφ ∧N#xψ → N#x(φ ∨ ψ)

Zero: #x(x ̸= x) = 0

Successor: N#xφ→ ∀y(¬φ(y/x) → #x(φ ∨ x = y) = s(#xφ)), with y not in φ.

Additivity: N#xφ ∧N#xψ → #x(φ ∨ ψ) + #x(φ ∧ ψ) = #xφ+#xψ

Principles such as these, which contain both mathematical and non-mathematical vocab-
ulary, are usually called bridge principles. Using certain instances of the principles listed
above, together with certain axioms of pure Peano arithmetic, we may derive the answer
to our problem as follows:

3

Solution to Example 1.2. Assume (a)–(c). By PAN(1) and (c), we have

N#x(Mx ∧ ¬Tx)

Let c be a new constant, and let ψ be the formula (Mx ∧ ¬Tx) ∧ x ̸= c. By Conjunctive
comprehension, we have N#xψ. By Successor instantiated with ψ, we get

∀y(¬ψ(y/x) → #x(ψ ∨ x = y) = s(#xψ))

which by pure logic yields

¬ψ(c/x) → #x(ψ ∨ x = c) = s(#xψ)

Since, by pure logic, we also have ¬ψ(c), we get

#x(ψ ∨ x = c) = s(#xψ)

Assume, towards contradiction, that Mc ∧ ¬Tc. Thus, by pure logic, we have

∀x(Mx ∧ ¬Tx↔ ψ(c) ∨ x = c)

By Extensionality and (c), it follows that 0 = s(#xψ), contradicting PAN(3). Hence, we
have ¬∃x(Mx ∧ ¬Tx). By pure logic, we now obtain

∀x(Mx ∨ (¬Mx ∧ Tx) ↔ Tx)

and also
∀x(Mx ∧ (¬Mx ∧ Tx) ↔Mx ∧ ¬Tx)

By Extensionality, it follows that

#x(Mx ∨ (¬Mx ∧ Tx)) = #xTx

and likwise, together with (c), that

#x(Mx ∧ (¬Mx ∧ Tx)) = 0

By repeated applications of PAN(1) and PAN(2), we get N1 and N2. Together with (a)
and (b), we get N#xMx and N#x(¬Mx ∧ Tx). By an instance of Additivity, we get

#x(Mx ∨ (¬Mx ∧ Tx)) + #x(Mx ∧ (¬Mx ∧ Tx)) = #xMx+#x(¬Mx ∧ Tx)

Likewise, by an instance of Disjunctive comprehension, we get

N#x(Mx ∨ (¬Mx ∧ Tx))

and thus N#xTx. From our instance of Additivity earlier, together with (a)–(c), we
obtain

#xTx+ 0 = 1 + 2

By PAN(6), we obtain #xTx = 1 + 2. By PAN(1–2, 6–7), we get 1 + 2 = 3. Hence, we
obtain the solution #xTx = 3.

4

What the bridge principles listed above all have in common is that they strike us as
true when we assume the intended interpretation of the #-operator and the vocabulary of
arithmetic, without assuming anything about the interpretation of the non-arithmetical
vocabulary. Here are two more such candidates:

Equinumerosity: ∀x(φ→ ∃!y(ψ ∧χ))∧∀y(ψ → ∃!x(φ∧χ)) → #xφ = #yψ, with x not
free in ψ, and y not free in φ.

Correspondence: ∃=nxφ↔ #xφ = n.

If we allow the #-operator to bind finite sequences of variables (with #x1 . . . xnφ in-
terpreted as the number of sequences of objects x1, . . . , xn such that φ), the following
principle for multiplication naturally comes to mind:

Multiplicativity: N#xφ ∧ N#yψ → #xy(φ ∧ ψ) = #xφ × #yψ, with x not free in ψ,
and y not free in φ.

So do the following comprehension principles:

Universal comprehension: N#xyφ→ N#x∀yφ.

Existential comprehension: N#xyφ→ N#x∃yφ.

General comprehension: N#xyφ→ N#xφ.

At this point, we should pause and ask ourselves: how many bridge principles do we
need? And, perhaps more importantly, what do we need them for? One could ask these
questions about about pure arithmetic as well. For instance, do the axioms of Peano
arithmetic suffice to settle every question of pure arithmetic? Gödel famously showed
that they do not. More generally, he showed that true arithmetic is not axiomatizable:
there is no decidable set of sentences from which all and only arithmetical truths can be
derived.

Let us stipulate that a sentence is standardly valid just in case it is true under
every interpretation that is standard with respect to the arithmetical vocabulary and the
#-operator (for a precise definition, see section 5). The principles listed so far should
all strike us a standardly valid. Moreover, the set of standard validities contains all the
truths of pure arithmetic. Since being a sentence of pure arithmetic is a decidable matter,
it follows from Gödel’s theorem that the standard validities are not axiomatizable either.
Still, there is an interesting question to be asked concerning their relative axiomatizability:

(1) Is there a decidable set of bridge principles from which, together with the truths
of pure arithmetic, all and only standard validities can be derived?

The answer to the question, however, is negative.1 In the analytical hierarchy, standard
validity is Π1

1-hard (i.e. every Π1
1-problem can be reduced to it), whereas true arithmetic

is in ∆1
1, i.e. both in Π1

1 and Σ1
1.

1BENTHEM and ICARD (2023)

5

Our second question about bridge principles concerns their usefulness. By definition,
the set S of standard validities is conservative over pure non-arithmetic: given any set
A of purely non-arithmetical assumptions (e.g. about apples and baskets), and given any
purely non-arithmetical statement C, we cannot derive C from A + S unless we can al-
ready derive C from A alone. But presumably, applied arithmetic nevertheless facilitates
reasoning about non-arithmetical matters. Let T be a theory of pure arithmetic, and
let B be a set of bridge principles such that T + B is conservative over non-arithmetic.
Roughly, the claim that a theory of applied arithmetic T +B facilitates reasoning about
non-arithmetical matters may be taken to imply that, for many sets of non-arithmetical
assumptions A and consequences C, the shortest proof of C from A is much longer than
the shortest proof of C from A+T+B. To solve Example 1.2, for instance, we could have
relied solely on instances of Correspondence, and used the purely logical proof required by
Example 1.1 as an intermediate step. But doing so would hardly illustrate the usefulness
of arithmetic. This begs the following question:

(2) What conservative theories of applied arithmetic offer significantly shorter proofs
of many non-arithmetical validities?

For our last question, say that a set B of bridge principles is arithmetically neutral
just in case, for any consistent theory A of pure arithmetic, and for any consistent theory
C of pure non-arithmetic, A + B + C is consistent. As we shall see in section 6, certain
combinations of the principles listed above are arithmetically neutral. In any case, a
neat division of labor between bridge principles and pure arithmetic would be desirable
if obtainable. This begs the following question:

(3) Is there an arithmetically neutral set of bridge principles from which, together with
the truths of pure arithmetic, all and only standard validities can be derived?

2 Pure arithmetic

The subject matter of arithmetic is the natural numbers 0, 1, 2, 3, etc. Intuitively, a pure
theory of arithmetic is one that only talks natural numbers. We can make this notion
of pureness precise by introducing a unary predicate N , whose intended interpretation is
being a natural number. Let L be a first-order vocabulary containing N .

Definition 2.1 (Reduct). Let L ⊆ L′, and let M be an L′-model. The L-reduct of M
(written M|L) is the L-model with the same domain as M such that, for any symbol
u ∈ L, we have uM|L = uM.

Definition 2.2 (Part). Let M be an L-model. The N -part of M (written M ↾ N), is
defined just in case

(i) M ⊨ ∃xNx,

(ii) for any constant c ∈ L, we have M ⊨ Nc, and

(iii) for any n-place function symbol f ∈ L, we have M ⊨ ∀x1 . . . ∀xn(Nx1 ∧ . . . ∧
Nxn → Nf(x1, . . . , xn)),

6

Furthermore, provided the above three conditions are satisfied, we define M ↾ N as
follows:

(i) Let |M ↾ N | = NM.

(ii) For any constant c ∈ L, let cM↾N = cM.

(iii) For any n-place function symbol f ∈ L, let fM↾N = fM ∩ (|M ↾ N |n × |MN |).

(iv) For any n-place predicate symbol P ∈ L, let PM↾N = PM ∩ |M ↾ N |n.

Definition 2.3 (Pure theory of arithmetic). We say that a first-order L-theory T is a
pure theory of arithmetic just in case, for any L-model M,

(i) if M ⊨ T , then M ↾ N is defined, and

(ii) if M ↾ N is defined, we have M ⊨ T if and only if M ↾ N ⊨ T .

Somewhat less precise, one might say that the truth of a pure theory of arithmetic in
a model only depends on the natural number part of that model.

By soundness and completeness, we may characterize this notion of pureness syntac-
tically.

Definition 2.4 (Relativization). For any L-formula φ, we define its relativization [φ]N
to N recursively:

(i) [s = t]N = s = t

(ii) [P t̄]N = P t̄

(iii) [¬φ]N = ¬[φ]N

(iv) [φ→ ψ]N = [φ]N → [ψ]N

(v) [∀xφ]N = ∀x(Nx→ [φ]N)

(vi) [∃xφ]N = ∃x(Nx ∧ [φ]N)

For instance, we have

[∀x(Px→ ∃yQxy)]N = ∀x(Nx→ (Px→ ∃y(Ny ∧Qxy)))

If there is no risk of ambiguity, we may write φN instead of [φ]N . For any L-theory T ,
we define

TN ={∃xNx} ∪ {Nc : c ∈ L}
∪ {∀x1 . . . ∀xn(Nx1 ∧ . . . ∧Nxn → Nf(x1, . . . , xn)) : f ∈ L}
∪ {φN : φ ∈ T}

Lemma 2.1. Let M be an L-model for which M ↾ N is defined, and let φ be an L-
sentence. Then we have M ⊨ φN just in case M ↾ N ⊨ φ.

Proof. Let M be an L-model for which M ↾ N is defined. Hence,

7

(4) a. M ⊨ ∃xNx,
b. for any constant c ∈ L, we have M ⊨ Nc, and
c. for any n-place function symbol f ∈ L, we have M ⊨ ∀x1 . . . ∀xn(Nx1 ∧ . . .∧

Nxn → Nf(x1, . . . , xn)),

and M ↾ N is defined by

(5) a. |M ↾ N | = NM,
b. for any constant c ∈ L, cM↾N = cM,
c. for any n-place function symbol f ∈ L, fM↾N = fM∩ (|M ↾ N |n×|M ↾ N |),

and
d. for any n-place predicate symbol P ∈ L, PM↾N = PM ∩ |M ↾ N |n.

Let X be the set of variables. First we show

(6) For any assignment g : X → |M ↾ N | and L-term t, we have tM,g = tM↾N,g.

by induction on the complexity of t. If t is a variable or constant, the claim obviously
holds, in the latter case by (4-b) and (5-b). Assume, as induction hypothesis, that the
claim holds for t1, . . . , tn. Let f ∈ L be an n-place function symbol. We get

f(t1, . . . , tn)
M,g =fM(tM,g

1 , . . . , tM,g
n)

=fM(tM↾N,g
1 , . . . , tM↾N,g

n) by ind. hyp.

=fM↾N(tM↾N,g
1 , . . . , tM↾N,g

n) by (4-c) and (5-c)

=f(t1, . . . , tn)
M↾N,g

Next, we show that

(7) For any assignment g : X → |M ↾ N | and L-formula φ, we have M, g ⊨ φN iff
M ↾ N, g ⊨ φ.

by induction on the complexity of φ. For the base cases, we have

M, g ⊨ [s = t]N iff M, g ⊨ s = t

iff sM,g = tM,g

iff sM↾N,g = tM↾N,g by (6)

iff M ↾ N, g ⊨ s = t

and

M, g ⊨ [Pt1 . . . tn]N iff M, g ⊨ Pt1 . . . tn

iff PM(tM,g
1 , . . . , tM,g

n)

iff PM(tM↾N,g
1 , . . . , tM↾N,g

n) by (6)

iff PM↾N(tM↾N,g
1 , . . . , tM↾N,g

n) by (5-d) and (6)

iff M ↾ N, g ⊨ Pt1 . . . tn

8

Assume, as induction hypothesis, that the claim holds for formulas φ and ψ. We get

M, g ⊨ [¬φ]N iff M, g ⊨ ¬[φ]N
iff M, g ̸⊨ [φ]N

iff M ↾ N, g ̸⊨ φ by ind. hyp.

iff M ↾ N, g ⊨ ¬φ

and

M, g ⊨ [φ ∧ ψ]N iff M, g ⊨ [φ]N ∧ [ψ]N

iff M, g ⊨ [φ]N and M, g ⊨ [ψ]N

⇔M ↾ N, g ⊨ φ and M ↾ N, g ⊨ ψ by ind. hyp.

⇔M ↾ N, g ⊨ φ ∧ ψ

and

M, g ⊨ [∀xφ]N iff M, g ⊨ ∀x(Nx→ φN)

iff M, ga→x ⊨ Nx→ φN for all a ∈ |M|
iff M, ga→x ⊨ φN for all a ∈ |M ↾ N | by (5-a)

iff M ↾ N, ga→x ⊨ φ for all a ∈ |M ↾ N | by ind. hyp.

iff M ↾ N, g ⊨ ∀xφ

It now follows from (7) that, for any L-sentence φ, we have M ⊨ φN iff M ↾ N ⊨ φ.

N -relativized sentences only talk about natural numbers, in the following precise
sense:

Corollary 2.1. Let M and M′ be L-models for which M ↾ N and M′
N are defined, and

let φ be an L-sentence. If M ↾ N = M′
N , we have M ⊨ φN just in case M′ ⊨ φN .

Moreover, we can characterize pureness syntactically:

Theorem 2.1. An L-theory T is a pure theory of arithmetic just in case T and TN are
logically equivalent.

Proof. Assume that T is a pure theory of arithmetic, and let M be an L-model. If
M ↾ N is defined, we have M ⊨ T just in case M ↾ N ⊨ T , which by Lemma holds just
in case M ⊨ TN . If M ↾ N is not defined, we have M ⊭ T and M ⊭ TN . Hence, T and
TN are logically equivalent. For the other direction, assume that T and TN are logically
equivalent, and let M be an L-model. If M ↾ N is defined, we have M ⊨ T just in case
M ⊨ TN , which by Lemma holds just in case M ↾ N ⊨ T . If M ↾ N is not defined, we
have M ⊭ TN and thus M ⊭ T . Hence, T is a pure theory of arithmetic.

We also observe that

Theorem 2.2. TN is logically equivalent to {φN : T ⊢ φ}.

9

Proof. For left to right, assume that M ⊨ TN . Then M ↾ N is defined and, by Lemma,
M ↾ N ⊨ T . If follows that M ↾ N ⊨ {φ : T ⊢ φ}. Hence, by Lemma, M ⊨ {φN : T ⊢
φ}.

For right to left, assume that M ⊨ {φN : T ⊢ φ}. Since

• T ⊢ ∃x(x = x),

• T ⊢ {∃x(x = c) : c ∈ L}, and

• T ⊢ {∀x1 . . . xn∃yf(x1, . . . , xn) = y : f ∈ L},

we get

• ∃x(Nx ∧ x = x) ∈ {φN : T ⊢ φ},

• {∃x(Nx ∧ x = c) : c ∈ L} ⊆ {φN : T ⊢ φ}, and

• {∀x1 . . . xn(Nx1 ∧ . . . ∧Nxn → ∃y(Ny ∧ f(x1, . . . , xn) = y)) : f ∈ L} ⊆ {φN : T ⊢
φ},

from which it follows that

• {φN : T ⊢ φ} ⊢ ∃xNx,

• {φN : T ⊢ φ} ⊢ {Nc : c ∈ L}, and

• {φN : T ⊢ φ} ⊢ {∀x1 . . . ∀xn(Nx1 ∧ . . . ∧Nxn → Nf(x1, . . . , xn)) : f ∈ L}.

Hence, M ⊨ TN .

3 Interpreting the extended syntax

In this section, we shall find an interpretation of the extended syntax with respect to
which the rules of inference are sound and complete. The idea is to translate the extended
syntax into the standard syntax. We achieve this by extending any given vocabulary L to
a vocabulary L# containing infinitely (but countably) many new function symbols. We
shall then define a translation τ from L-formulas in the extended syntax to L#-formulas
in the standard syntax, and show that, for any set of L-sentences Γ and sentence φ in
the extended syntax, we have

(8) Γ ⊢ φ just in case τ [Γ] ⊢ τ [φ]

where τ [Γ] = {τ [φ] : φ ∈ Γ}. By soundness and completeness of the standard syntax and
semantics, this will allow us to conclude that

(9) Γ ⊢ φ if and only if τ [Γ] ⊨ τ [φ]

10

3.1 Extending the vocabulary

Say that an occurrence o of a term is free in an expression e just in case no subterm of o
is a variable bound in e by a quantifier outside o. Furthermore, say that o is salient in e
just in case o is (i) free in e, and (ii) no proper superterm of o is free in e. Suppose that
there are exactly n salient occurrences of terms in e. If n = 0, let e be the empty sequence.
Otherwise, for each 1 ≤ i ≤ n, let ei be the term with the i:th salient occurrence in e,
counting from left to right, and let e be the (possibly repetitive) sequence e1, . . . , en of
terms. Let e be the result of replacing each salient occurrence of a term in e with the low
dash symbol . For instance, if

e = ∀x(Pxy → f(x, y) = g(y, z))

we get e1 = y, e2 = y, e3 = g(y, z), and thus

e = ∀x(Px → f(x,) =)

We stipulate that, if #xφ is an L-term in the extended syntax with n salient occurrences
of terms, then f#xφ is an n-place function symbol. Finally, we define the extension L#
of L by

L# = L ∪ {f#xφ : φ an L-formula in the extended syntax}

3.2 Translation

We define a translation τ , from L-expressions in the extended syntax to L#-expressions
in the standard syntax, recursively:

• If t is a variable or a constant, then τ [t] = t.

• If f ∈ L is a function symbol, then τ [f(t̄)] = f(τ [t̄]), where t̄ = ⟨t1, . . . , tn⟩ and
τ [t̄] = ⟨τ [t1], . . . , τ [tn]⟩.

• τ [#xφ] = f#xφ(τ [#xφ]).

• τ [s = t] = τ [s] = τ [t].

• τ [P t̄] = Pτ [t̄].

• τ [¬φ] = ¬τ [φ].

• τ [φ→ ψ] = τ [φ] → τ [ψ].

• τ [∀xφ] = ∀xτ [φ].

For instance, with P, f, g ∈ L, we have

τ [#x(Pxy → f(x, y) = g(y, z))] = f#x(Px →f(x,)=)(y, y, g(y, z))

First we observe that, for any expression e,

(10) e and τ [e] have the same constants and variables occurring freely.

11

If x a variable and t is a closed term, let e(t/x) be the result of replacing all free oc-
currences of x in e with t. Since substitution of a free occurrence of a variable in an
expression always takes place inside a salient occurrence of a term in that expression, we
also have

(11) e(t/x) = e

Using this fact, we show that

(12) τ [e(t/x)] = τ [e](τ [t]/x)

Proof. By induction on the complexity of e. For the base cases, we have

• τ [x(t/x)] = τ [t] = x(τ [t]/x) = τ [x](τ [t]/x)

• τ [c(t/x)] = τ [c] = c(τ [t]/x) = τ [c](τ [t]/x)

Assume, as induction hypothesis, that the claim holds for the immediate sub-expressions.
We consider the following cases:

• If f ∈ L is a function symbol, we get

τ [f(s̄)(t/x)] = τ [f(s̄(t/x))]

= f(τ [s̄(t/x)]) by definition of τ

= f(τ [s̄](τ [t]/x)) by induction hypothesis

= f(τ [s̄])(τ [t]/x)

= τ [f(s̄)](τ [t]/x) by definition of τ

•

τ [#yφ(t/x)] = f#yφ(t/x)(τ [#yφ(t/x)]) by definition of τ

= f#yφ(t/x)(τ [#yφ](τ [t]/x)) by induction hypothesis

= f#yφ(t/x)(τ [#yφ])(τ [t]/x)

= f#yφ(τ [#yφ])(τ [t]/x) by (11)

= τ [#yφ](τ [t]/x) by definition of τ

•

τ [¬φ(t/x)] = ¬τ [φ(t/x)] by definition of τ

= ¬τ [φ](τ [t]/x) by induction hypothesis

= τ [¬φ](τ [t]/x) by definition of τ

•

τ [(φ ∧ ψ)(t/x)] = τ [φ(t/x) ∧ ψ(t/x)]
= τ [φ(t/x)] ∧ τ [ψ(t/x)] by definition of τ

= τ [φ](τ [t]/x) ∧ τ [ψ](τ [t]/x) by induction hypothesis

= (τ [φ] ∧ τ [ψ])(τ [t]/x)
= τ [φ ∧ ψ](τ [t]/x) by definition of τ

12

• If x = y, we have trivially that

τ [∀yφ(t/x)] = τ [∀yφ] = τ [∀yφ](τ [t]/x)

If x ̸= y, we get

τ [∀yφ(t/x)] = τ [∀y(φ(t/x))]
= ∀yτ [φ(t/x)] by definition of τ

= ∀y(τ [φ](τ [t]/x)) by induction hypothesis

= ∀yτ [φ](τ [t]/x)
= τ [∀yφ](τ [t]/x) by definition of τ

Lastly, we show that τ is injective:

(13) If τ [e] = τ [e′] then e = e′.

Proof. By induction on the complexity of e. The base cases are obvious, since τ [t] = t if
t is a variable or a constant. Assume, as induction hypothesis, that the claim holds for
any immediate sub-expressions. We consider the following cases:

• If f ∈ L is a function symbol, then τ [f(t̄)] = τ [e′] implies

f(τ [t̄]) = f(τ [t1], . . . , τ [tn]) = τ [e′] = f(τ [t′1], . . . , τ [t
′
n])

where e′ = f(t′1, . . . , t
′
n) and τ [t1] = τ [t′1], . . . , τ [tn] = τ [t′n]. By induction hypothesis,

we get t1 = t′1, . . . , tn = t′n. Hence, f(t̄) = f(t′1, . . . , t
′
n) = e′.

• τ [#xφ] = τ [e′] implies

f#xφ(τ [#xφ]) = τ [e′] = f#x′φ′(τ [#x′φ′])

where e′ = #x′φ′, #xφ = #x′φ′ and τ [#xφ] = τ [#x′φ′]. By induction hypothesis,

we get #xφ = #x′φ′. Since #xφ = #xφ(#xφ/) and #x′φ′ = #x′φ′(#x′φ′/), it
follows that #xφ = #x′φ′ = e′.

3.3 Rules of inference

We define the classical provability relation ⊢ inductively, letting it apply to the extended
syntax as well. For any sentences (closed formulas) φ, ψ, χ, and for any sets Γ,∆,Σ of
sentences:

• φ ∈ Γ
A

Γ ⊢ φ

• Γ ⊢ φ ∆ ⊢ ψ
∧I

Γ,∆ ⊢ φ ∧ ψ

13

• Γ ⊢ φ ∧ ψ
∧E

Γ ⊢ φ and Γ ⊢ ψ

• Γ ⊢ φ
∨I

Γ ⊢ φ ∨ ψ and Γ ⊢ ψ ∨ φ

• Γ ⊢ φ ∨ ψ ∆, φ ⊢ χ Σ, ψ ⊢ χ
∨E

Γ,∆,Σ ⊢ χ

• Γ, φ ⊢ ψ
→I

Γ ⊢ φ→ ψ

• Γ ⊢ φ→ ψ ∆ ⊢ φ
→E

Γ,∆ ⊢ ψ

• Γ, φ ⊢ ψ ∆, φ ⊢ ¬ψ
¬I

Γ,∆ ⊢ ¬φ

• Γ,¬φ ⊢ ψ ∆,¬φ ⊢ ¬ψ
¬E

Γ,∆ ⊢ φ
For any formula φ with free occurrences of at most one variable x:

• Γ ⊢ φ(c/x) c a constant not in Γ or φ
∀I

Γ ⊢ ∀xφ

• Γ ⊢ ∀xφ t a closed term
∀E

Γ ⊢ φ(t/x)

• Γ ⊢ φ(t/x)
∃I

Γ ⊢ ∃xφ

• Γ ⊢ ∃xφ ∆, φ(c/x) ⊢ ψ c a constant not in ∆, φ or ψ
∃E

Γ,∆ ⊢ ψ

• t a closed term
=I

Γ ⊢ t = t

• Γ ⊢ φ(t/x) ∆ ⊢ t = t′ or ∆ ⊢ t′ = t t and t′ closed terms
=E

Γ,∆ ⊢ φ(t′/x)
Remark 3.1. Perhaps this is not what the elimination rule for identity usually looks
like. However, if φ(t, t′/x) is the result of replacing some free occurrences of x in φ with
t, and the rest with t′, one can derive the perhaps more standard rule

Γ ⊢ φ(t/x) ∆ ⊢ t = t′ t and t′ closed terms

Γ,∆ ⊢ φ(t, t′/x)
as follows. Let ψ be the result of replacing only some free occurrences of x in φ with t,
so that ψ(t′/x) = φ(t, t′/x). Then we also have ψ(t/x) = φ(t/x). Hence, we get

Γ ⊢ φ(t/x)
∆ ⊢ t = t′

¬ψ(t′/x) ∈ {¬ψ(t′/x)}
AI¬ψ(t′/x) ⊢ ¬ψ(t′/x)

=E
∆,¬ψ(t′/x) ⊢ ¬ψ(t/x) (= ¬φ(t/x))

¬E
Γ,∆ ⊢ ψ(t′/x) (= φ(t, t′/x))

14

First we show that

Lemma 3.1. For any set of L-sentences Γ and L-sentence φ in the extended syntax such
that Γ ⊢ φ, we have τ [Γ] ⊢ τ [φ].

Proof. By induction on the complexity of proofs. For the base case, assume that we have
Γ ⊢ φ by A, with φ ∈ Γ. Clearly, we then have τ [φ] ∈ τ [Γ]. By A, we get τ [Γ] ⊢ τ [φ].

Assume, as induction hypothesis, that the claim holds for any immediate sub-proofs.
We consider the following cases:

• We have Γ,∆ ⊢ φ ∧ ψ by ∧I, with Γ ⊢ φ and ∆ ⊢ ψ. By induction hypothesis, we
have τ [Γ] ⊢ τ [φ] and τ [∆] ⊢ τ [ψ]. Hence, by ∧I, we get τ [Γ], τ [∆] ⊢ τ [φ] ∧ τ [ψ],
which is the same as τ [Γ,∆] ⊢ τ [φ ∧ ψ].

• We have Γ ⊢ ∀xφ by ∀I, with Γ ⊢ φ(c/x) and c a constant not in Γ or φ. By
induction hypothesis, we have τ [Γ] ⊢ τ [φ(c/x)]. By (12), this is the same as τ [Γ] ⊢
τ [φ](τ [c]/x), which is the same as τ [Γ] ⊢ τ [φ](c/x). By (10), c does not occur τ [Γ]
or τ [φ]. By ∀I, we get τ [Γ] ⊢ ∀xτ [φ], which is the same as τ [Γ] ⊢ τ [∀xφ].

• We have Γ ⊢ φ(t/x) by ∀E, with Γ ⊢ ∀xφ and t a closed term. By induction
hypothesis, we have τ [Γ] ⊢ τ [∀xφ], which is the same as τ [Γ] ⊢ ∀xτ [φ]. By (10),
τ [φ] has free occurrences of at most one variable x. Hence, by ∀E, we get τ [Γ] ⊢
τ [φ](τ [t]/x). By (12), this is the same as τ [Γ] ⊢ τ [φ(t/x)].

• We have Γ ⊢ t = t by =I. Since τ [t] = τ [t], we get τ [Γ] ⊢ τ [t] = τ [t] by =I, which is
the same as τ [Γ] ⊢ τ [t = t].

• We have Γ,∆ ⊢ φ(t′/x) by =E, with Γ ⊢ φ(t/x), ∆ ⊢ t = t′ or ∆ ⊢ t′ = t,
where t and t′ are closed terms. By induction hypothesis, we have τ [Γ] ⊢ τ [φ(t/x)]
and τ [∆] ⊢ τ [t = t′], which is the same as τ [∆] ⊢ τ [t] = τ [t′]. By (10), τ [t]
and τ [t′] are closed terms. By (12), we have τ [Γ] ⊢ τ [φ](τ [t]/x). By =E, we get
τ [Γ], τ [∆] ⊢ τ [φ](τ [t′]/x), which is the same as τ [Γ,∆] ⊢ τ [φ](τ [t′]/x). By (12), this
is the same as τ [Γ,∆] ⊢ τ [φ(t′/x)].

Remark 3.2. Using the result above, we can already show that no amount of pure
arithmetic will, by itself, help solve Example 1.2. Let A be a pure theory of arithmetic
in the vocabulary LA = {N, 0, s,+,×}. We assume that A is consistent, as it otherwise
will imply the answer trivially. Let LC = {M,T}, let L = LA ∪ LC , and let Γ be the
following set of L-sentences in the extended syntax:

(a) #xMx = 1

(b) #x(¬Mx ∧ Tx) = 2

(c) #x(Mx ∧ ¬Tx) = 0

(d) #xTx ̸= 3

Their translations are given by the set of L#-sentences τ [Γ]:

15

(a) f#xMx = 1

(b) f#x(¬Mx∧Tx) = 2

(c) f#x(Mx∧¬Tx) = 0

(d) f#xTx ̸= 3

Let MA be an LA-model of A. We extend it to an L#-model M of A ∪ τ [Γ] as follows.
Let D be a non-empty set disjoint from |MA|, let |M| = |MA| ∪ D, and let a ∈ D.
Furthermore, let

(a) [f#xMx]
M = [1]MA

(b) [f#x(¬Mx∧Tx)]
M = [2]MA

(c) [f#x(Mx∧¬Tx)]
M = [0]MA

(d) [f#xTx]
M = a

The interpretation of the rest of L# in M can be chosen arbitrarily. In any case, we have
M ⊨ τ [Γ]. Moreover, since A is a pure theory of arithmetic, and M ↾ N = (MA) ↾ N ,
we have M ⊨ A. By soundness, it follows that

A ∪ {f#xMx = 1, f#x(¬Mx∧Tx) = 2, f#x(Mx∧¬Tx) = 0} ̸⊢ f#xTx = 3

and, by Lemma 3.1, that

A ∪ {#xMx = 1,#x(¬Mx ∧ Tx) = 2,#x(Mx ∧ ¬Tx) = 0} ̸⊢ #xTx = 3

Next, we show that

Lemma 3.2. For any set of L-sentences Γ and L-sentence φ in the extended syntax such
that τ [Γ] ⊢ τ [φ], we have Γ ⊢ φ.

Proof. By induction on the complexity of proofs. For the base case, assume that we have
τ [Γ] ⊢ τ [φ] by A, with τ [φ] ∈ τ [Γ]. By (13), we then have φ ∈ Γ. By A, we get Γ ⊢ φ.

Assume, as induction hypothesis, that the claim holds for any immediate sub-proofs.
We consider the following cases:

• We have τ [Γ], τ [∆] ⊢ τ [φ] ∧ τ [ψ] by ∧I, with τ [Γ] ⊢ τ [φ] and τ [∆] ⊢ τ [ψ]. By
induction hypothesis, we have Γ ⊢ φ and ∆ ⊢ ψ. Hence, by ∧I, we get Γ,∆ ⊢ φ∧ψ.

• We have τ [Γ] ⊢ ∀xτ [φ] by ∀I, with τ [Γ] ⊢ τ [φ](c/x) and c a constant not in τ [Γ] or
τ [φ]. By (12), we have τ [φ(c/x)] = τ [φ](τ [c]/x) = τ [φ](c/x). Hence, by induction
hypothesis, we have Γ ⊢ φ(c/x). By (10), c does not occur Γ or φ. By ∀I, we get
Γ ⊢ ∀xφ.

• We have τ [Γ] ⊢ τ [φ](τ [t]/x) by ∀E, with τ [Γ] ⊢ ∀xτ [φ] and τ [t] a closed term. By
induction hypothesis, we have Γ ⊢ ∀xφ. By (10), τ [φ] has free occurrences of at
most one variable x, and t is a closed term. Hence, by ∀E, we get Γ ⊢ φ(t/x).

16

• We have τ [Γ] ⊢ τ [t] = τ [t′] by =I, with τ [t] = τ [t′]. By (13), we have t = t′. By =I,
we get Γ ⊢ t = t′.

• We have τ [Γ], τ [∆] ⊢ τ [φ](τ [t′]/x) by =E, with τ [Γ] ⊢ τ [φ](τ [t]/x), τ [∆] ⊢ τ [t] =
τ [t′] or τ [∆] ⊢ τ [t′] = τ [t], where τ [t] and τ [t′] are closed terms. By (12) and
induction hypothesis, we have Γ ⊢ φ(t/x) and ∆ ⊢ t = t′. By =E, we get Γ,∆ ⊢
φ(t′/x).

The desired results now follows by Lemma 3.1 and 3.2:

Theorem 3.1. For any set of L-sentences Γ and L-sentence φ in the extended syntax,
we have Γ ⊢ φ just in case τ [Γ] ⊢ τ [φ].

4 Numerical validity

Let LA = {N, 0, s,+,×} be our arithmetical vocabulary, let LE be a vocabulary disjoint
from LA containing a unary predicate O, and let L = LA ∪ LE. Let N be the standard
LA-model, with NN = |N | = N, and let Th(N)N = {φN : N ⊨ φ} be the pure theory of
true arithmetic.

Definition 4.1 (Numerical extensions). Let ME be a LE-model such that ME ⊨ ∀xOx.
An L#-model M is a numerical extension of ME just in case the following obtains:

(i) (M|LA) ↾ N and (M|LE) ↾ O are defined.

(ii) (M|LE) ↾ O = ME.

(iii) There is c ∈ |M|−NM such that the following obtains. Let φ be an L-formula in
the extended syntax, and suppose that #xφ has n salient occurrences of terms.
Let φ(v̄/#xφ) be the result of replacing the occurrences of these terms in φ with
n distinct variables v̄ = ⟨v1, . . . , vn⟩ not occurring in #xφ. If a1, . . . , an ∈ |M|,
let g be an assignment such that g(v1) = a1, . . . , g(vn) = an, and let

κ = |{a ∈ |M| : M, gx→a ⊨ τ [φ(v̄/#xφ)]}|

If κ ∈ N, we then have
fM
#xφ(a1, . . . , an) = κM

and otherwise
fM
#xφ(a1, . . . , an) = c

Definition 4.2 (Numerical validity). An L#-sentence φ is numerically valid just in case,
for any LE-model ME such that ME ⊨ ∀xOx, and for any numerical L#-extension M
of ME, we have M ⊨ φ.

The set of numerical validities is arithmetically neutral, since every consistent theory
of pure arithmetic together with any consistent theory of pure non-arithmetic has a
numerical extension:

17

Lemma 4.1. For every LE-model ME such that ME ⊨ ∀xOx, and for every LA-model
MA such that MA ⊨ ∀xNx, if |ME| ∩ |MA| = ∅, there is a numerical L#-extension M
of ME with domain |M| = |ME| ∪ |MA| such that (M|LE) ↾ O = ME and (M|LA) ↾
N = MA.

Proof. Once each L-symbol has received an interpretation in M, the interpretation of
each function symbol f#xφ ∈ L# can be defined inductively on the complexity of φ,
which is an L-formula in the extended syntax. In the base case, φ is just an L-formula.
If #xφ is an L-formula in the extended syntax, we can assume as part of the induction
hypothesis that all L#-symbols in τ [φ] already have received an interpretation in M.

However, due to the following property and Trakhtenbrot’s theorem, numerical valid-
ity is not axiomatizable whenever LE contains at least one binary predicate:

Lemma 4.2. Let ME be an LE-model such that ME ⊨ ∀xOx, and let M be a numer-
ical L#-extension of ME. For any L-formula φ in the extended syntax, and for any
assignment g, we then have M, g ⊨ τ [N#xφ] just in case {a ∈ |M| : M, gx→a ⊨ τ [φ]} is
finite.

In particular:

Lemma 4.3. Let ME be an LE-model such that ME ⊨ ∀xOx, and let M be a numerical
L#-extension of ME. Then we have M ⊨ τ [N#xOx] just in case ME is finite.

Hence:

Lemma 4.4. Let L′
E = LE − {O}. For each L′

E-sentence φ, we have that τ [N#xOx →
φO] is numerically valid just in case φ is true in all finite L′

E-models.

Proof. For left to right, assume that τ [N#xOx → φO] is numerically valid. Let M
be a finite L′

E-model, and expand it to an LE-model ME with OME = |ME|. Let
M# be a numerical extension of ME. By Lemma 4.3, since ME is finite, we have
M# ⊨ τ [N#xOx]. By assumption, we get M# ⊨ φO, and thus M#|LE ⊨ φO. By
Lemma 2.1, since (M#|LE) ↾ O = ME, we have ME ⊨ φ, and thus M ⊨ φ.

For right to left, assume that φ is true in all finite L′
E-models. Let ME be an LE-

model such that ME ⊨ ∀xOx, and let M be a numerical extension of ME. We get two
cases, in either of which M ⊨ τ [N#xOx→ φO]:

1. ME is finite. By assumption, we then have ME ⊨ φ. By Lemma 2.1, since
(M|LE) ↾ O = ME, we get M ⊨ φO. Hence, M ⊨ τ [N#xOx→ φO].

2. ME is infinite. By Lemma 4.3, we haveM ⊨ τ [¬N#xOx]. Hence,M ⊨ τ [N#xOx→
φO].

Hence, τ [N#xOx→ φO] is numerically valid.

Thus, due to Trakhtenbrot’s theorem, if LE contains a binary predicate, numerical
validity in L# is not axiomatizable.

18

5 Standard validity

Definition 5.1 (Standard extensions). Let ME be an LE-model such that ME ⊨ ∀xOx.
An L#-model M is a standard extension of ME just in case

(i) M is a numerical extension of ME, and

(ii) (M|LA) ↾ N is isomorphic to N .

Remark 5.1. It should be reasonably clear that every LE-model satisfying ∀xOx of has
a standard extension.

Remark 5.2. Whenever two formulas φ and ψ are both satisfied by infinitely many
elements, any standard (indeed, numerical) extension will satisfy #xφ = #ψ. Why,
you may ask? The chief reason is that, with this arbitrary stipulation, we ensure that
Equinumerosity (and Extensionality, which follows from the former) is true in all standard
extensions, without having to concern ourselves with infinite cardinalities. Also, since we
are dealing with first-order logic, we can assume without loss for all relevant purposes
that all models are countable.

Definition 5.2 (Standard validity). An L#-sentence φ is standardly valid just in case,
for any LE-model ME such that ME ⊨ ∀xOx, and for any standard L#-extension M of
ME, we have M ⊨ φ.

Suppose that φ is standardly valid. Assume that M is an L#-model such that

(i) (M|LA) ↾ N and (M|LE) ↾ O are defined,

(ii) M satisfies Correspondence, and

(iii) (M|LA) ↾ N is elementary equivalent to N .

Does it follow thatM ⊨ φ? Possible counterexample: Disjunctive comprehension. Perhaps
even Conjunctive comprehension? Indeed. We can define an extension M of an LE-model
whose N -part is a non-standard model of Th(N)N , as follows. Let c be a non-standard
number in that model, and let d ∈ |M| − NM. For any a1, . . . , an ∈ |M|, let g be an
assignment such that g(v1) = a1, . . . , g(vn) = an, let

K = |{a ∈ |M| : M, gx→a ⊨ τ [φ(v̄/#xφ)]}|

and let

fM
#xφ(a1, . . . , an) =

|K|M if K is finite

c if K is infinite and |M| −K is finite

d otherwise

Provided that M− NM is infinite, we have M ⊨ τ [N#x(x = x)] but M ̸⊨ τ [N#(x =
x∧Nx)]. To construct a counterexample to Disjunctive comprehension, just switch c and
d. Then M ⊨ τ [N#xNx∧N#x¬Nx] but M ⊭ τ [N#x(Nx∨¬Nx)]. This will also serve
as a counterexample to Additivity.

19

As we saw earlier, numerical validity is not axiomatiable due to Trakhtenbrot’s the-
orem concerning the unaxiomatizability of finite validity. We see that standard validity
is not axiomatizable either, but only for the rather trivial reason that it contains true
arithmetic. But finite validity, for instance, is axiomatizable relative to true arithmetic,
since truth in all finite models can be decided by true arithmetic. There is an LA-formula
FinVal(x) such that, for any L′

E-sentence φ, we have that FinVal(⌜φ⌝) is a theorem of true
arithmetic just in case φ is true in all finite L′

E-models. Let

B = {FinVal(⌜φ⌝) → (τ [N#xOx] → φO) : φ an L′
E-sentence}

First we observe that every element of B is standardly valid. To see why, let M be
a standard extension of an LE-model ME such that ME ⊨ ∀xOx, and assume that
M ⊨ FinVal(⌜φ⌝) ∧ τ [N#xOx]. Hence, φ is true in all finite L′

E-models. Moreover, by
Lemma 4.3 and the second conjunct, ME is finite. Hence, ME ⊨ φO. By Lemma 2.1, we
get M ⊨ φO.

Now, if φ is true in all finite L′
E-models, we clearly have Th(N)N ∪B ⊢ τ [N#xOx] →

φO. Does the converse hold? Yes. Assume that φ is false in some finite L′
E-model M.

Extend it to an LE-model ME with OME = |ME|. Let M# be a standard extension of
ME. Thus, M# ⊨ Th(N)N . By Lemma 4.3, we have M# ⊨ τ [N#xOx]. By Lemma
2.1, we have M# ⊨ ¬φO. Since every element of B is standardly valid, we also have
M# ⊨ B. Hence, Th(N)N ∪B ̸⊢ τ [N#xOx] → φO.

Let NV be the set of all numerically valid L#-sentences, and let SV be the set of all
standardly valid L#-sentences. We have

Th(N)N +NV ̸⊢ SV

since, on any common LA-definition of <,

¬∃y(Ny ∧ ∀z(Nz → #x(Nx ∧ x < z) ̸= y)) ∈ SV

but
Th(N)N +NV ̸⊢ ¬∃y(Ny ∧ ∀z(Nz → #x(Nx ∧ x < z) ̸= y))

as witnessed by any non-standard numerical extension satisfying Th(N)N .

6 Arithmetically neutral bridge principles

Lemma 6.1. The following bridge principles are all numerically valid:

1. Equinumerosity

2. Conjunctive comprehension

3. Disjunctive comprehension

4. Zero

5. Successor

Taken together, they are therefore arithmetically neutral.

20

Proof. Let M be a numerical extension.

• We show that M is a model of Zero. Let φ be the formula x ̸= x. Then #xφ
is empty, f#x(x̸=x) is a 0-place function symbol, and τ [#x(x = x)] = f#x(x ̸=x).
Moreover, we have

|{a ∈ |M| : M, gx→a ⊨ τ [φ(v̄/#xφ)]}| = |{a ∈ |M| : M, gx→a ⊨ x ̸= x}| = 0

in which case fM
#x(x ̸=x) = 0M. Since, by definition of numerals, 0 = 0, we get

M ⊨ f#x(x ̸=x) = 0.

• We show that M is a model of Successor. Let t1, . . . , tn be the salient terms of
#xφ, i.e. #xφ = ⟨t1, . . . , tn⟩. Let g be an assignment. By definition, we have

[τ [#xφ]]M,g = [f#xφ(t1, . . . , tn)]
M,g = [f#xφ]

M([t1]
M,g, . . . , [tn]

M,g)

Let h be an assignment such that h(v1) = [t1]
M,g, . . . , h(vn) = [tn]

M,g, and let

κ = |{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ)]}|

Observe that

{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ)]} = {a ∈ |M| : M, gx→a ⊨ τ [φ]}

We get two cases:

– κ ∈ N. Then
[f#xφ]

M([t1]
M,g, . . . , [tn]

M,g) = [κ]M

Let b ∈ |M|, and assume that M, gy→b ⊨ ¬φ(y/x). Observe that

#x(φ ∨ x = y) = ⟨t1, . . . , tn, y⟩

Moreover, since y can be assumed not to occur in t1, . . . , tn, the assignment
hvn+1→b satisfies

hvn+1→b(v1) = t
M,gy→b

1

...

hvn+1→b(vn) = t
M,gy→b
n

hvn+1→b(vn+1) = yM,gy→b

Let
λ = |{a ∈ |M| : M, (hvn+1→b)x→a ⊨ τ [φ(v̄/#xφ)] ∨ x = vn+1}|

Since, as noted earlier,

{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ)]} = {a ∈ |M| : M, gx→a ⊨ τ [φ]}

21

we get

|{a ∈ |M| : M, (hvn+1→b)x→a ⊨ τ [φ(v̄/#xφ)] ∨ x = vn+1}| =
|{a ∈ |M| : M, (hvn+1→b)x→a ⊨ τ [φ(v̄/#xφ)]}∪
{a ∈ |M| : M, (hvn+1→b)x→a ⊨ x = vn+1}| =
|{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ)]} ∪ {b}| =
|{a ∈ |M| : M, gx→a ⊨ τ [φ]} ∪ {b}| = κ+ 1

and thus λ = κ+ 1. Hence,

τ [#x(φ ∨ x = y)]M,gy→b = f#x(φ∨x=y)(t1, . . . , tn, y)
M,gy→b =

fM
#x(φ∨x=y)(t

M,gy→b

1 , . . . , t
M,gy→b
n , yM,gy→b) = κ+ 1M =

s(κ)M = sM(κM)

as required.

– κ ̸∈ N. Then
fM
#xφ(t

M,g
1 , . . . , tM,g

n) = c

Since c ̸∈ NM, we get M, g ̸⊨ Nf#xφ(t1, . . . , tn).

• We show that M is a model of Conjunctive comprehension. Let t1, . . . , tn be the
salient terms of #xφ, and let s1, . . . , sm be the salient terms of #xψ. Observe that

#x(φ ∧ ψ) = ⟨t1, . . . , tn, s1, . . . , sm⟩

Let v1, . . . , vn, u1, . . . , um be distinct variables not occurring in φ ∧ ψ, let v̄ =
⟨v1, . . . , vn⟩, let ū = ⟨u1, . . . , um⟩ and w̄ = ⟨v1, . . . , vn, u1, . . . , um⟩. Let g be an
assignment, let h be an assignment such that

h(v1) = [t1]
M,g, . . . , h(vn) = tM,g

n

and
h(u1) = [s1]

M,g, . . . , h(um) = sM,g
m

Let
κ = |{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ)]}|

and let

λ =|{a ∈ |M| : M, hx→a ⊨ τ [(φ ∧ ψ)(w̄/#x(φ ∧ ψ))]}|
=|{a ∈ |M| : M, hx→a ⊨ τ [φ(v̄/#xφ) ∧ ψ(ū/#xψ)]}|

We get two cases:

– κ ∈ N. Clearly, we then have λ ∈ N. By definition of M, we get

fM
#x(φ∧ψ)(t

M,g
1 , . . . , tM,g

n , sM,g
1 , . . . , sM,g

m) = λM

and thus
M, g ⊨ Nf#x(φ∧ψ)(t1, . . . , tn, s1, . . . , sn)

22

– κ ̸∈ N. By definition of M, we get

fM
#xφ(t

M,g
1 , . . . , tM,g

n) = c

Since c ̸∈ NM, we get M, g ̸⊨ Nf#xφ(t1, . . . , tn).

• The case of Disjunctive comprehension is similar.

• We show that M is a model of Equinumerosity. Let g be an assignment, and assume
that

M, g ⊨ τ [∀x(φ→ ∃!y(ψ ∧ χ)) ∧ ∀y(ψ → ∃!x(φ ∧ χ))]

with x not free in ψ, and y not free in φ. Hence,

|{a ∈ |M| : M, gx→a ⊨ τ [φ]}| = |{a ∈ |M| : M, gy→a ⊨ τ [ψ]}|

Since M is a numerical extension, we get two cases, in either of which we have

M, g ⊨ τ [#xφ = #yψ]

Extensionality follows from Equinumerosity by taking x = y as χ. Moreover, provided
that we allow φ, ψ and χ to contain free variables other than x and y, and take Equinu-
merosity to be the universal closure of each such instance, we can establish the following:

Lemma 6.2. Let M be an L#-model satisfying Equinumerosity, let φ and ψ be L-formulas
in the extended syntax with x not free in ψ and y not free in φ, and let g be an assignment.
If {a ∈ |M| : M, gx→a ⊨ τ [φ]} and {a ∈ |M| : M, gy→a ⊨ τ [ψ]} are both finite and
contain equally many elements, then M, g ⊨ τ [#xφ = #yψ].

Proof. Let M be an L#-model satisfying Equinumerosity, let φ and ψ be L-formulas in
the extended syntax with x not free in ψ and y not free in φ, and let g be an assignment.
Suppose that

{a ∈ |M| : M, gx→a ⊨ τ [φ]} = {a1, . . . , an}

and
{a ∈ |M| : M, gy→a ⊨ τ [ψ]} = {b1, . . . , bn}

Let x1, . . . , xn ̸= x and y1, . . . , yn ̸= y be distinct variables not occurring in φ or ψ, and
let χ be the formula

(x = x1 ∧ y = y1) ∨ . . . ∨ (x = xn ∧ y = yn)

Let h be an assignment just like g, except that h(xi) = ai and h(yi) = bi for each
i = 1, . . . , n. Clearly,

{a ∈ |M| : M, hx→a ⊨ τ [φ]} = {a1, . . . , an}

and
{a ∈ |M| : M, hy→a ⊨ τ [ψ]} = {b1, . . . , bn}

23

Since M satisfies Equinumerosity, we have

M, h ⊨ τ [∀x(φ→ ∃!y(ψ ∧ χ)) ∧ ∀y(ψ → ∃!x(φ ∧ χ)) → #xφ = #yψ]

By assumption, we also have

M, h ⊨ τ [∀x(φ→ ∃!y(ψ ∧ χ)) ∧ ∀y(ψ → ∃!x(φ ∧ χ))]
Hence,

M, h ⊨ τ [#xφ = #yψ]

and thus
M, g ⊨ τ [#xφ = #yψ]

Let B be the L-theory in the extended syntax consisting of the universal closure of
every instance of Equinumerosity, Conjunctive comprehension, Zero, and Successor. We
show that

Lemma 6.3. For any n and L-formula φ in the extended syntax, we have

B ⊢ ∃=nxφ→ #xφ = n

Proof. By induction on n. The base case is given by Zero and Extensionality. Assume, as
induction hypothesis, that the claim holds for n. We thus assume that, for any formula
φ, we have

B ⊢ ∃=nxφ→ #xφ = n

We will show that the same holds for n+ 1:

B ⊢ ∃=n+1xφ→ #xφ = n+ 1

We observe that, as a matter of pure logic,

⊢ ∃=n+1xφ↔ ∃y(φ(y/x) ∧ ∃=nx(φ ∧ x ̸= y))

By induction hypothesis, it follows that

B ⊢ ∃=n+1xφ→ ∃y(φ(y/x) ∧#x(φ ∧ x ̸= y) = n)

Hence, it suffices to establish that

B ⊢ ∃y(φ(y/x) ∧#x(φ ∧ x ̸= y) = n) → #xφ = n+ 1

We reason inside B. Assume c to be such that

φ(c/x) ∧#x(φ ∧ x ̸= c) = n

Let ψ be the formula φ ∧ x ̸= c. By Conjunctive comprehension and the second conjunct
of our assumption, we have N#xψ. As an instance of Successor, we have

N#xψ → (¬ψ(c/x) → #x(ψ ∨ x = c) = s(#xψ))

Since ¬ψ(c/x), we get
#x(ψ ∨ x = c) = s(#xψ)

Since φ(c/x) by assumption, we also have

∀x(ψ ∨ x = c↔ φ)

By Extensionality and our assumption that #x(φ∧x ̸= c) = n, we finally get #xφ = s(n),
which by definition is the same as #xφ = n+ 1.

24

6.1 Adding some pure arithmetic

Let our pure theory of arithmetic A consist of PAN(1)–PAN(4). Observe that

(14) For any natural number n, we have A ⊢ Nn.

Let T = A ∪B. We show that

Lemma 6.4. For any n and L-formula φ in the extended syntax, we have

T ⊢ #xφ = n→ ∃=nxφ

Proof. By induction on n. For the base case, we need to establish that

T ⊢ #xφ = 0 → ¬∃xφ

We reason inside T . Assume that #xφ = 0. Assume, towards contradiction, that there
is c such that φ(c/x). Let ψ be the formula φ ∧ x ̸= c. By Conjunctive comprehension,
PAN(1) and our first assumption, we have N#xψ. As an instance of Successor, we have

N#xψ → (¬ψ(c/x) → #x(ψ ∨ x = c) = s(#xψ))

Since ¬ψ(c/x), we get
#x(ψ ∨ x = c) = s(#xψ)

Since φ(c/x) by assumption, we also have

∀x(ψ ∨ x = c↔ φ)

By Extensionality, we get #xφ = s(#xψ). By PAN(3), it follows that #xφ ̸= 0, a
contradiction.

Assume, as induction hypothesis, that the claim holds for n. We thus assume that,
for any formula φ, we have

T ⊢ #xφ = n→ ∃=nxφ

We will show that the same holds for n+ 1:

T ⊢ #xφ = n+ 1 → ∃=n+1xφ

We observe that, as a matter of pure logic,

⊢ ∃=n+1xφ↔ ∃y(φ(y/x) ∧ ∃=nx(φ ∧ x ̸= y))

By induction hypothesis and Lemma 6.3, it follows that

T ⊢ ∃=n+1xφ↔ ∃y(φ(y/x) ∧#x(φ ∧ x ̸= y) = n)

Hence, it suffices to establish that

T ⊢ #xφ = n+ 1 → ∃y(φ(y/x) ∧#x(φ ∧ x ̸= y) = n)

25

We reason inside T . Assume that #xφ = n+ 1. If ¬∃xφ, we have #xφ = 0 by Lemma
6.3, contradicting PAN(3). Hence, we can assume that there is c such that φ(c/x). It
remains to be shown that

#x(φ ∧ x ̸= c) = n

Let ψ be the formula φ ∧ x ̸= c. By Conjunctive comprehension, (14) and the second
conjunct of our assumption, we have N#xψ. As an instance of Successor, we have

N#xψ → (¬ψ(c/x) → #x(ψ ∨ x = c) = s(#xψ))

Since ¬ψ(c/x), we get
#x(ψ ∨ x = c) = s(#xψ)

Since φ(c/x) by assumption, we also have

∀x(ψ ∨ x = c↔ φ)

By Extensionality, we get #xφ = s(#xψ). By our assumption that #xφ = s(n), we
get s(#xψ) = s(n). By (14), we get Ns(#xψ). Since N#xψ, we get #xψ = n by
PAN(4).

Theorem 6.1. For any n and L-formula φ in the extended syntax, we have

T ⊢ ∃=nxφ↔ #xφ = n

Proof. By Lemma 6.3 and 6.4.

References

BENTHEM, J. V. and ICARD, T. (2023). Interleaving logic and counting. The Bulletin
of Symbolic Logic, 29(4):pp. 503–587.

26

	Preliminaries
	Pure arithmetic
	Interpreting the extended syntax
	Extending the vocabulary
	Translation
	Rules of inference

	Numerical validity
	Standard validity
	Arithmetically neutral bridge principles
	Adding some pure arithmetic

