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1 Introduction

Sometimes, in order to a prove an arithmetical fact ∀xφ(x) by induction,
straightforward induction “does not work” and instead one “must” use a
“stronger” induction hypothesis ψ(x) and prove ∀xψ(x), from which ∀xφ(x)
may be derived.

To give an example, suppose we want to prove that, for all natural num-
bers n, the sum of the first n odd numbers is a perfect square. Straightforward
induction yields the following:

1. Base case: the sum of the first 0 odd numbers is 0, which is a perfect
square.

2. Inductive step: if the sum of the first n odd numbers is a perfect square
k2, then the sum of the first n+ 1 odd numbers is k2 + 2n+ 1. But it
is not true that k2 + 2n + 1 is a perfect square for all k and n. So we
are stuck.

Instead, we need to prove the following stronger result by induction: for all
natural numbers n, the sum of the first n odd numbers is n2. Straightforward
induction yields the following:

1. Base case: the sum of the 0 first odd numbers is 0, which is 02.

2. Inductive step: if the sum of the first n odd numbers is n2, then the
sum of the first n+ 1 odd numbers is n2 + 2n+ 1 = (n+ 1)2.

2 Formal characterization

Here’s how not to characterize the situation: there are formulas φ(x) and
ψ(x) such that
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1. PA ̸⊢ φ(0) ∧ ∀x(φ(x) → φ(x′)).

2. PA ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

3. PA ⊢ ∀xψ(x) → ∀xφ(x).

This situation is impossible. 2 implies PA ⊢ ∀xψ(x), which by 3 yields
PA ⊢ ∀xφ(x), which by pure logic yields PA ⊢ φ(0) ∧ ∀x(φ(x) → φ(x′)),
which contradicts 1.

Instead, the situation may perhaps be characterized as follows: starting
from the axioms of Peano arithmetic minus the induction axioms, we succes-
sively prove more and more theorems using logic and the rule of induction:

φ(0) ∀x(φ(x) → φ(x′))

∀xφ(x)

Suppose that, at some stage in this process of mathematical inquiry, we have
reached a theory T consisting of the axioms and hitherto proved theorems.
Then, as we will show, the following situation may indeed arise:

1. T ̸⊢ φ(0) ∧ ∀x(φ(x) → φ(x′)).

2. T ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

3. T ⊢ ∀xψ(x) → ∀xφ(x).

This is equivalent to the following:

1. T, φ(0) ∧ ∀x(φ(x) → φ(x′)) → ∀xφ(x) ̸⊢ ∀xφ(x).

2. T ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

3. T ⊢ ∀xψ(x) → ∀xφ(x).

3 A non-standard model

Consider the following non-standard model M of Robinson arithmetic. Let
A = {..., a−2, a−1, a0, a1, a2, ...} be a countably infinite set disjoint from the
natural numbers, and let the domain of the model be N∪A. Let the constant 0
be interpreted as the number 0, and extend the interpretation of the function
symbols ′,+, · as follows:

1. a′z = az+1 for z ∈ Z.

2. az + n = n+ az = az+n for z ∈ Z and n ∈ N.

2



3. az + au = au + az = az+u for z, u ∈ Z.

4. az · 0 = 0 · az = 0 for z ∈ Z.

5. az · n = n · az = az·n for z ∈ Z and n ∈ N− {0}.

6. az · au = au · az = az·u for z, u ∈ Z.

It can easily be verified that this is also a model of what we may call minimal
arithmetic, which is the theory you get by adding commutativity, associativ-
ity and distribution laws for addition and multiplications to the axioms of
Robinson arithmetic.

In order to very that 1-3 above are possible, it will suffice to find true
formulas φ(x) and ψ(x) (true in the sense of being satisfied by all natural
numbers in the standard model as well as the non-standard model) with the
following profile:

... a−2 a−1 a0 a1 a2 ...
φ(x) ... 0 0 1 0 0 ...
ψ(x) ... 0 0 0 0 0 ...

Then let T be the theory you get by adding ψ(0) ∧ ∀x(ψ(x) → ψ(x′)) and
∀xψ(x) → ∀xφ(x) to Robinson arithmetic. Since these sentences are true
in our non-standard model, this is a model of T , verifying 1-3 above. For
instance, let

φ(x) :=∀y∀z(x ̸= x · x ∧ y + x = z + x→ y = z)

ψ(x) :=∀y∀z(y + x = z + x→ y = z)

Then we actually have the following situation (with Q being Robinson arith-
metic):

1. Q ⊢ φ(0).

2. Q ̸⊢ ∀x(φ(x) → φ(x′)).

3. Q ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

4. ⊢ ∀x(ψ(x) → φ(x)).

In this case, ψ(x) is stronger than φ(x) in the strongest possible sense.
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4 Proof by different induction hypothesis?

As a matter of fact, the following situations are both possible:

1. T ̸⊢ φ(0) ∧ ∀x(φ(x) → φ(x′).

2. T ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

3. T ⊢ ∀xψ(x) ↔ ∀xφ(x).

4. T ̸⊢ ∀x(ψ(x) → φ(x)).

5. T ̸⊢ ∀x(φ(x) → ψ(x)).

and

1. T ̸⊢ φ(0) ∧ ∀x(φ(x) → φ(x′).

2. T ⊢ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

3. T ⊢ ∀xψ(x) ↔ ∀xφ(x).

4. T ̸⊢ ∀x(ψ(x) → φ(x)).

5. T ⊢ ∀x(φ(x) → ψ(x)).

In the former case, it suffices to find true formulas φ(x) and ψ(x) with the
following profile:

... a−2 a−1 a0 a1 a2 ...
φ(x) ... 1 1 1 0 0 ...
ψ(x) ... 0 0 1 1 1 ...

For instance, let

φ(x) := ∀y(x > y → x2 ̸= y2)

ψ(x) := ∀y(x < y → x2 ̸= y2)

Observe that ⊢ ∀xφ(x) ↔ ∀xψ(x), by simple relabeling of variables. Thus,
let T =MA+ ψ(0) ∧ ∀x(ψ(x) → ψ(x′)).

In the latter case, it suffices to find true formulas φ(x) and ψ(x) with the
following profile:

... a−2 a−1 a0 a1 a2 ...
φ(x) ... 0 0 1 0 0 ...
ψ(x) ... 0 0 1 1 1 ...
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For instance, let

φ(x) := ∀y(x ̸= y → x2 ̸= y2)

ψ(x) := ∀y(x < y → x2 ̸= y2)

Observe that we have
⊢ ∀x(φ(x) → ψ(x))

and
∀x∀y(x < y ∨ x = y ∨ y < x) ⊢ ∀xφ(x) ↔ ∀xψ(x)

and also
M ⊨ ∀x∀y(x < y ∨ x = y ∨ y < x)

Thus, let T =MA+∀x∀y(x < y∨x = y∨y < x)+ψ(0)∧∀x(ψ(x) → ψ(x′)).
We then have a case were one must use a different induction hypotheses, and
can use one that is weaker.

5 The original example

Going back to our original example, let the function f : N → N be defined
recursively as follows:

f(0) = 0

f(n+ 1) = f(n) + 2n+ 1

What we want to show is that, for any natural number n, there’s a natural
number k such that f(n) = k2. In order to that, we extend the language LPA

with a new 1-place function symbol f, the intended interpretation of which
is f , and add the following two axioms to our theory of minimal arithmetic:

(A1) f(0) = 0.

(A2) ∀x(f(x′) = f(x) + (0′′ · x)′).

Let φ(x) be ∃y(f(x) = y ·y) and let ψ(x) be f(x) = x·x. Clearly, ⊢ ∀xψ(x) →
∀xφ(x). To see that this may indeed a case where, in order to prove ∀xφ(x)
by induction, one needs to use the stronger induction hypothesis ψ(x), extend
the non-standard model M of minimal arithmetic introduced earlier with an
interpretation g : N ∪ A→ N ∪ A of f, defined as follows:

1. g(0) = 0.

2. g(n+ 1) = g(n) + 2 · n+ 1 for n ∈ N.
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3. g(a0) = a1.

4. g(an+1) = g(an) + 2 · an + 1 for n ∈ N.

5. g(an−1) = g(an) + 2 · an + 1 for n ∈ Z− (N− {0}).

The result M′ is a model of MA+ A1 + A2. Moreover, we have

M′ ̸|= ∀x(∃y(f(x) = y · y) → ∃y(f(x′) = y · y))

as witnessed by a0 assigned to x, and

M′ |= ∀x(f(x) = x′ · x′ → f(x′) = x′′ · x′′)

since g(an) > a(n+1)2 for all n ∈ Z. With T =MA+ A1 + A2, we have

T ̸⊢ ∀x(∃y(f(x) = y · y) → ∃y(f(x′) = y · y))

and
T ⊢ f(0) = 0 · 0 ∧ ∀x(f(x) = x · x→ f(x′) = x′ · x′)

as desired.
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