
Why ChatGPT cannot learn to reason deductively

Eric Johannesson

Department of Philosophy
Ashoka University

March 27, 2023



Deductive reasoning

What does it mean to be able to reason deductively?

Roughly:

Definition

To be able to reason deductively is to be able to answer questions
of the following type:

Suppose that P1, . . . ,Pn. Does it follows that C?

Clearly, this is not an all-or-nothing matter!

But the more questions you can answer of that type, the better
you are at deductive reasoning.



An example

Example

Suppose that Anna is looking at Bob, and that Bob is looking at
Carol. Furthermore, suppose that Anna is happy, and that Carol is
not happy. Does it follow that someone who is happy is looking at
someone who is not happy?

Solution.

Yes, it does follow. Bob is either happy or not happy. If he is
happy, then someone who is happy (Bob) is looking at someone
who is not (Carol). If he is not happy, then someone who is happy
(Anna) is looking at someone who is not (Bob). In either case,
someone who is happy is looking at someone who is not.



What does ChatGPT say?

Suppose that Anna is looking at Bob, and that Bob is looking at Carol. Furthermore, 
suppose that Anna is happy, and that Carol is not happy. Does it follow that someone 
who is happy is looking at someone who is not happy?

No, it does not follow that someone who is happy is looking at someone who is not 
happy.

In this scenario, Anna is happy and looking at Bob, who is looking at Carol, who is not 
happy. However, we don't know if Bob is happy or not. It's possible that Bob is also 
happy, which means that someone who is happy (Bob) is looking at someone who is not 
happy (Carol).

Therefore, we cannot make a definitive conclusion about whether someone who is happy 
is looking at someone who is not happy based on the information given.

ChatGPT Mar 14 Version. Free Research Preview. Our goal is to make AI systems more natural and safe to interact with. Your
feedback will help us improve.

New chat



Thinking fast and slow

Kahneman: humans use two modes of reasoning, one which is fast
and instinctive, and one which is slow and deliberative.

ChatGPT is like someone who can only think fast.

But some logical problems require more time, even for an
extremely good deductive reasoner.

The existence of such problems essentially follows from the
so-called time hierarchy theorem in computational complexity
theory.



Decidable and undecidable problems

Let Σ∗ be the set of all finite strings of symbols taken from some
finite alphabet Σ.

Definition (Decidability)

A set S ⊆ Σ∗ is decidable just in case there is a Turing machine M
that decides S , in the following sense: for any x ∈ Σ∗,

if x ∈ S , then M accepts x (outputs ‘yes’ on input x), and

if x 6∈ S , then M rejects x (outputs ’no’ on input x).

Theorem (The undecidability of first-order logic)

Suppose that Σ∗ contains all sentences of some first-order
language that has at least one binary predicate. The set S ⊆ Σ∗ of
logical truths in this language is not decidable.



The undecidability of first-order logic

C follows from P1, . . . ,Pn just in case P1 ∧ . . . ∧ Pn → C is a
logial truth.

Hence, there is no chatbot such that, for any first-order sentences
P1, ...,Pn and C , when asked whether C follows from P1, . . . ,Pn,
the chatbot answers

‘yes’ if C follows from P1, . . . ,Pn, and

‘no’ if C does not follow from P1, . . . ,Pn.

So, it would be unfair to accuse ChatGPT of not being able to
perform this impossible task!



Computational problems as logical problems

We say that a set R ⊆ N is decidable just in case there is a Turing
machine that, when given a sequence representing a number n as
input,

outputs a sequence representing 1 if n ∈ R, and

outputs a sequence representing 0 if n 6∈ R.

Theorem (Representability)

There is a finite first-order theory Q of arithmetic such that, for
any decidable set R ⊆ N, there is a formula ϕ(x) such that, for
any number n,

Q ` ϕ(n) if n ∈ R, and

Q ` ¬ϕ(n) if n 6∈ R.

where n is the numeral corresponding to n.



Learning algorithms

For any characteristic function c : N→ {0, 1} and number n, a
learning algorithm A takes a sequence s = 〈c(0), . . . , c(n)〉 of
answers as input, and outputs a description A(s) of a Turing
machine.

Definition (Success in the limit)

A learning algorithm A is succesful in the limit with respect to a set
of characteristic functions F ⊆ {0, 1}N just in case, for any c ∈ F ,
there is a number k such that A(〈c(0), . . . , c(n)〉) = Mc for all
n ≥ k , where Mc is a description of a Turing machine computing c .



On the existence of successful learning algorithms

Theorem

A set F ⊆ {0, 1}N has an in the limit successful learning algorithm
just in case there is a recursively enumerable set of (descriptions
of) Turing machines that compute all and only functions in F .

Corollary

No learning algorithm is successful in the limit with respect to the
set of all recursive characteristic functions.

But:

Corollary

There is a learning algorithm that is successful in the limit with
respect to the set of all primitive recursive characteristic functions.



Slow AI

Let F ⊆ {0, 1}N be the set of all primitive recursive characteristic
functions.

We construct a learning algorithm called SlowAI for F as follows.
Let M0,M1,M2, . . . be a recursive enumeration of descriptions of
Turing machines computing all and only functions in F .

For any sequence of answers, let SlowAI return the first description
of a Turing machine in the enumeration that is consistent with
those answers.

With sufficient training, SlowAI can learn to decide any primitive
recursive set.

As we shall see, ChatGPT cannot.



Time complexity

For each total function f : N→ N, we define the set Cf ⊆ P(N) as
follows: for any R ⊆ N, we have R ∈ Cf just in case there is a
Turing machine M deciding R such that, for any n ∈ N, M returns
an answer to input n in less than f (n) steps.

A set R ⊆ N is said to be decided in

linear time just in case R ∈ Cf for some linear function
f (n) = a + bn.

polynomial time just in case R ∈ Cf for some polynomial
function f (n) = a0 + a1n + . . . + akn

k .

exponential time just in case R ∈ Cf for some exponential
function f (n) = 2g(n), where g is a polynomial function.

Fact: for every polynomial function f , there is k such that, for any
n ≥ k , we have 2n > f (n).



Example: propositional logic

Any problem of propositional logic can be solved in exponential
time: a problem of length n contains at most n atomic
propositions, for which there are 2n different interpretations
(assignments of truth-values).

Evaluating a formula under an interpretation can be done in linear
time (with respect to the length of the formula). Hence, there is
an algorithm A and a number k such that, for any propositional
logic problem of length n, we have that A solves the problem in
less than kn2n steps.

It is not known whether problems of propositional logic can be
solved in polynomial time.

This is (literally) a million dollar question in computer science!



A time hierarchy theorem for primitive recursive sets

For any function f : N→ N, let PRf ⊆ {0, 1}N be the set of
characteristic functions computed by a Turing machine in less than
f (n) steps for all n.

Theorem

Let f : N→ N be a primitive recursive time-constructible function,
and define g(n) = f (2n)3 + 1. Then we have PRf ⊂ PRg .

Corollary

There is a primitive recursive set R ⊆ N represented by a formula
ϕR(x) in Q such that some Turing machine decides whether
Q ` ϕR(n) in less than 22n·3 + 1 steps for all n, but no Turing
machine decides whether Q ` ϕR(n) in less than 2n steps for all n.



The time complexity of ChatGPT

As far as I have been able to ascertain, for any dimension d , and
for any input string of length n ≤ d , ChatGPT runs in polynomial
time as a function of d and n.1

Hence, ChatGPT cannot learn to decide sets that are only
decidable in exponential time.

So there are infinitely many formulas ϕ(x) such that SlowAI can
learn to decide whether Q ` ϕ(n) for any n, but ChatGPT cannot.

1
It returns an answer in less than something like a + bdn2 + cnd2 steps, https://stackoverflow.com/

questions/65703260/computational-complexity-of-self-attention-in-the-transformer-model

https://stackoverflow.com/questions/65703260/computational-complexity-of-self-attention-in-the-transformer-model
https://stackoverflow.com/questions/65703260/computational-complexity-of-self-attention-in-the-transformer-model


Caveats

In a way, we already knew there would be decidable problems
that ChatGPT must fail to decide, since it only takes inputs
up to a certain length.

Presumably, any physical computational device – or human,
for that matter – can really only decide a finite set.

There is a number k such that, for any finite set R of natural
numbers, there is a Turing machine deciding whether n ∈ R in
less than kn steps for each natural number n.

(But perhaps one can establish lower bounds on the length of
the description of such a machine?)

In any case, by the time complexity of ChatGPT alone, we
cannot rule out the possibility that it solves every logical
problem that humans can solve.



Caveats

Lastly, suppose we do not require ChatGPT to only answer ‘yes’ or
‘no’, but allow it to provide answers of arbitrary length.
Furthermore, suppose that we choose to interpret an answer as
‘yes’ (‘no’) just in case the last token is ‘yes’ (‘no’).

In other words, we allow ChatGPT to “think out loud”.

Then it may no longer be the case that ChatGPT always answers
our questions in polynomial time (even though each token is
produced in polynomial time).


