Primitive recursion and tail recursion

Eric Johannesson

April 11, 2023

Definition 1 (Basic functions). The *basic functions* are the zero function Z, the successor function s, and the identity functions id_i^n for any $1 \le i \le n$, defined by

$$Z(x) = 0$$

$$s(x) = x + 1$$

$$id_i^n(x_1, ..., x_n) = x_i$$

Definition 2 (Composition). Let f be an n-place function and $g_1, ..., g_n$ be m-place functions. Define the m-place function h by

$$h(\bar{x}) = f(g_1(\bar{x}), ..., g_n(\bar{x}))$$

Then we say that h is obtained from f and $g_1, ..., g_n$ by composition.

Definition 3 (Primitive recursion). Let f and g be n-place and (n + 1)-place functions, respectively. Define the (n + 1)-place function h by

$$h(\bar{x},0) = f(\bar{x})$$
$$h(\bar{x},y+1) = g(\bar{x},y,h(\bar{x},y))$$

Then we say that h is obtained from f och g by primitive recursion.

Definition 4 (Tail recursion). Let f and $g_1, ..., g_n$ be *n*-place functions. Define the (n + 1)-place function h by

$$h(\bar{x}, 0) = f(\bar{x})$$

 $h(\bar{x}, y + 1) = h(g_1(\bar{x}), ..., g_n(\bar{x}), y)$

Then we say that h is obtained from f och g by *tail recursion*.

Remark 1. We could allow g_1, \ldots, g_n to be (n + 1)-place functions taking y as an additional argument. Theorem 1 below shows that it makes no difference.

Definition 5 (Primitive recursive functions). The *primitive recursive functions* are the smallest set of functions containing the basic functions that is closed under composition and primitive recursion.

Definition 6 (Tail recursive functions). The *tail recursive functions* are the smallest set of functions containing the basic functions that is closed under composition and tail recursion.

Theorem 1. Every primitive recursive function is tail recursive.

Proof. By induction on function descriptions. By definition, the basic functions are tail recursive, and composition preserves tail recursivity. Assume, as induction hypothesis, that f and g are tail recursive, and let h be obtained from f and g by primitive recursion:

$$h(\bar{x}, 0) = f(\bar{x})$$
$$h(\bar{x}, y+1) = g(\bar{x}, y, h(\bar{x}, y))$$

Define the tail recursive function h' by

$$h'(\bar{x}, z, v, 0) = z$$

$$h'(\bar{x}, z, v, y + 1) = h'(\bar{x}, g(\bar{x}, v, z), s(v), y)$$

where s is the successor function (a basic function). We will show that

$$h'(\bar{x}, f(\bar{x}), 0, y) = h(\bar{x}, y)$$

To so do, we first show that, for any k and \bar{x}, y, z, v ,

$$h'(\bar{x}, h(\bar{x}, v), v, y+k) = h'(\bar{x}, h(\bar{x}, v+k), v+k, y)$$

by induction on k. The base case k = 0 is obvious. Assume, as induction hypothesis, that the claim holds for k (with respect to any \bar{x}, y, z, v). Then we get

$$\begin{aligned} h'(\bar{x}, h(\bar{x}, v), v, y + (k+1)) &= h'(\bar{x}, g(\bar{x}, v, h(\bar{x}, v)), v + 1, y + (k+1)) \\ &= h'(\bar{x}, h(\bar{x}, v + 1), v + 1, y + k) \\ \text{[by induction hypothesis]} &= h'(\bar{x}, h(\bar{x}, (v+1) + k), (v+1) + k, y) \\ &= h'(\bar{x}, h(\bar{x}, v + (k+1)), v + (k+1), y) \end{aligned}$$

as desired. Hence, in particular,

$$h'(\bar{x}, h(\bar{x}, 0), 0, 0+k) = h'(\bar{x}, h(\bar{x}, 0+k), 0+k, 0)$$

Thus, for any \bar{x}, y , we have

$$h'(\bar{x}, f(\bar{x}), 0, y) = h'(\bar{x}, h(\bar{x}, y), y, 0) = h(\bar{x}, y)$$

Theorem 2. Every tail recursive function is primitive recursive.

Proof. By induction on the complexity of function description. By definition, the basic functions are primitive recursive, and composition preserves primitive recursivity. Assume, as induction hypothesis, that f and g_1, \ldots, g_n are primitive recursive, and let h be obtained from f and g_1, \ldots, g_n by tail recursion:

$$h(\bar{x}, 0) = f(\bar{x})$$

 $h(\bar{x}, y + 1) = h(g_1(\bar{x}), ..., g_n(\bar{x}), y)$

For each $i \ge 1$, let $\pi(i)$ be the i: th prime number. We use the fact that the *n*-place sequence coding function

$$\langle x_1, ..., x_n \rangle = \pi(1)^{x_1+1} \cdot ... \cdot \pi(n)^{x_n+1}$$

and the corresponding 2-place decoding function

$$[\langle x_1, \dots, x_n \rangle]_i = x_i$$

are primitive recursive. Define the primitive recursive function g by

$$g(\bar{x},0) = \langle \bar{x} \rangle$$

$$g(\bar{x},y+1) = \langle g_1([g(\bar{x},y)]_1,...,[g(\bar{x},y)]_n),...,g_n([g(\bar{x},y)]_1,...,[g(\bar{x},y)]_n) \rangle$$

and the primitive recursive function h' by

$$h'(\bar{x}, y) = f([g(\bar{x}, y)]_1, ..., [g(\bar{x}, y)]_n)$$

We will show that

$$h'(\bar{x}, y) = h(\bar{x}, y)$$

To do so, we first show that for any k and \bar{x}, y, z ,

$$h([g(\bar{x},z)]_1,...,[g(\bar{x},z)]_n,y+k) = h([g(\bar{x},z+k)]_1,...,[g(\bar{x},z+k)]_n,y)$$

by induction on k. The base case k = 0 is obvious. Assume, as induction hypothesis, that the claim holds for k (with respect to any \bar{x}, y, z). We then get

$$\begin{split} h([g(\bar{x},z)]_1,...,[g(\bar{x},z)]_n,y+(k+1)) \\ &= h(g_1([g(\bar{x},z)]_1,...,[g(\bar{x},z)]_n),...,g_n([g(\bar{x},z)]_1,...,[g(\bar{x},z)]_n),y+k) \\ \text{[by def. of } g] &= h([g(\bar{x},z+1)]_1,...,[g(\bar{x},z+1)]_n,y+k) \\ \text{[by ind. hyp.]} &= h([g(\bar{x},(z+1)+k)]_1,...,[g(\bar{x},(z+1)+k)]_n,y) \\ &= h([g(\bar{x},z+(k+1))]_1,...,[g(\bar{x},z+(k+1))]_n,y) \end{split}$$

as desired. We conclude that, in particular,

$$\begin{aligned} h(\bar{x}, 0+k) &= h([g(\bar{x}, 0)]_1, ..., [g(\bar{x}, 0)]_n, 0+k) \\ &= h([g(\bar{x}, 0+k)]_1, ..., [g(\bar{x}, 0+k)]_n, 0) \\ &= f([g(\bar{x}, 0+k)]_1, ..., [g(\bar{x}, 0+k)]_n) \\ &= h'(\bar{x}, 0+k) \end{aligned}$$

and so

$$h(\bar{x}, y) = h'(\bar{x}, y)$$