Determinism

Eric Johannesson

September 29, 2023

Let L_T be the vocabulary for a theory of time, containing (at least) a unary predicate T(point in time) and a binary predicate < (earlier than), let $L_U \supseteq L_T$ be the vocabulary for a theory of the universe, and let $L = L_U - L_T$. We will assume, for the sake of simplicity, that L only contains predicates (no constants or function symbols), all with arity greater than zero. For each $P \in L$, the intended interpretation of $P\bar{x}y$ is that the x:s are in the extension of P at time y. Consequently, for any L_U -model \mathcal{M} with domain D, n-place predicate $P \in L$ and point in time $t \in T^{\mathcal{M}}$, we define the extension of P in \mathcal{M} at t as

$$P^{\mathcal{M},t} := \{ \langle a_1, ..., a_{n-1} \rangle \in D^{n-1} : P^{\mathcal{M}}(a_1, ..., a_{n-1}, t) \}$$

Intuitively, a theory is deterministic just in case the extensions of the theory's predicates at a particular point in time determine the extensions at every later point in time. If a theory is deterministic, does it follow that it can define the latter in terms of the former?

To answer that question, we must first specify what it means for a theory to be deterministic:

Definition 1 (Deterministic). An L_U -theory Θ is *deterministic* just in case, for any L_U models \mathcal{M} and \mathcal{M}' of Θ with the same domain and the same interpretation of L_T , and for any $t, t' \in T^{\mathcal{M}}$ such that $t <^{\mathcal{M}} t'$: if $P^{\mathcal{M},t} = P^{\mathcal{M}',t}$ for all $P \in L$, then $P^{\mathcal{M},t'} = P^{\mathcal{M}',t'}$ for all $P \in L$.

We also need to specify what it means for a formula to talk exclusively about extensions at a particular point in time:

Definition 2 (Restriction). Let $\alpha(x)$ be an L_U -formula. For each L_U -formula φ , its α -restriction $[\varphi]_{\alpha}$ is defined recursively:

1.
$$[s = t]_{\alpha} := s = t$$

2. $[P\bar{s}t]_{\alpha} := \begin{cases} P\bar{s}t & \text{if } P \in L_{T} \\ \exists x(Tx \land \alpha(x) \land P\bar{s}x) & \text{otherwise} \end{cases}$
3. $[\neg \varphi]_{\alpha} := \neg [\varphi]_{\alpha}$
4. $[\varphi \land \psi]_{\alpha} := [\varphi]_{\alpha} \land [\psi]_{\alpha}$
5. $[\forall \bar{x}\varphi]_{\alpha} := \forall \bar{x}[\varphi]_{\alpha}$

Whenever $\alpha(x)$ defines a unique point in time, the α -restricted formulas only talk about extensions at that point, in the following sense:

Lemma 1. Let $\alpha(x)$ be an L_U -formula, and let \mathcal{M} and \mathcal{M}' be two L_U -models with the same domain and the same interpretation of L_T such that $\mathcal{M}, \mathcal{M}' \models \exists ! x(Tx \land \alpha(x))$. Let $t, t' \in T^{\mathcal{M}}$ be the unique points in time satisfying $\alpha(x)$ in each of them, and assume that $P^{\mathcal{M},t} = P^{\mathcal{M}',t'}$ for all $P \in L$. Then, for any L_U -formula φ and assignment $g, \mathcal{M}, g \models [\varphi]_{\alpha}$ iff $\mathcal{M}', g \models [\varphi]_{\alpha}$.

Proof. By induction on the complexity of φ .

Using Beth's definability theorem, our question can now be answered in the positive:

Theorem 1. Let Θ be a deterministic L_U -theory, let $\alpha(x)$ and $\beta(x)$ be L_T -formulas and φ an L_U -formula. Then there is an L_U -formula ψ such that

$$\Theta \models \exists ! x(Tx \land \alpha(x)) \land \exists ! x(Tx \land \beta(x)) \land \exists x \exists y(\alpha(x) \land \beta(y) \land x < y) \rightarrow \\ \forall \bar{x}([\varphi]_{\beta}(\bar{x}) \leftrightarrow [\psi]_{\alpha}(\bar{x}))$$

Proof. Assume that Θ is a deterministic L_U -theory, and let $\alpha(x)$ and $\beta(x)$ be L_T -formulas. For each *n*-place predicate $P \in L$, introduce new n - 1-place predicates P_{α} and P_{β} . Let $L_{\alpha} := \{P_{\alpha} : P \in L\}$ and $L_{\beta} := \{P_{\beta} : P \in L\}$. Let Θ' be the result of extending Θ with the following axioms for each $P \in L$:

(1) a. $\forall \bar{x} [P_{\alpha} \bar{x} \leftrightarrow \exists y (Ty \land \alpha(y) \land P \bar{x}y)]$ b. $\forall \bar{x} [P_{\beta} \bar{x} \leftrightarrow \exists y (Ty \land \beta(y) \land P \bar{x}y)]$

Clearly, Θ' is a conservative extension of Θ with respect to L_U . Define

$$\Theta^+ := \Theta' \cup \{\exists ! x(Tx \land \alpha(x)), \exists ! x(Tx \land \beta(x)), \exists x \exists y(\alpha(x) \land \beta(y) \land x < y)\}$$

Let \mathcal{M} and \mathcal{M}' be models of Θ^+ with the same domain and the same interpretation of L_T , and let $a, b \in T^{\mathcal{M}}$ and $a', b' \in T^{\mathcal{M}'}$ be the unique points in time satisfying $\alpha(x)$ and $\beta(x)$ in \mathcal{M} and \mathcal{M}' , respectively. Since $\alpha(x)$ and $\beta(x)$ are L_T -formulas, it follows that a = a' and b = b'. Moreover, $a <^{\mathcal{M}} b$. Assume that $P_{\alpha}^{\mathcal{M}} = P_{\alpha}^{\mathcal{M}'}$ for all $P \in L$. By (1-a), it follows that $P^{\mathcal{M},a} = P^{\mathcal{M}',a}$ for all $P \in L$. Since \mathcal{M} and \mathcal{M}' are models of Θ , and Θ is deterministic, it follows that $P^{\mathcal{M},b} = P^{\mathcal{M}',b}$ for all $P \in L$. Hence, by (1-b), $P_{\beta}^{\mathcal{M}} = P_{\beta}^{\mathcal{M}'}$ for all $P \in L$. By Beth's definability theorem, there is an $L_T \cup L_{\alpha}$ -formula π for each $P \in L$ such that

$$\Theta^+ \vDash \forall \bar{x} [P_\beta \bar{x} \leftrightarrow \pi(\bar{x})]$$

Clearly, for any $L_T \cup L_{\alpha}$ -formula π , there is an L_U -formula ψ such that

$$\Theta^+ \vDash \forall \bar{x}(\pi(\bar{x}) \leftrightarrow [\psi]_\alpha(\bar{x}))$$

It follows that, for each L_U -formula φ , there is an L_U -formula ψ such that

$$\Theta' \vDash \exists ! x(Tx \land \alpha(x)) \land \exists ! x(Tx \land \beta(x)) \land \exists x \exists y(\alpha(x) \land \beta(y) \land x < y) \rightarrow \\ \forall \bar{x}([\varphi]_{\beta}(\bar{x}) \leftrightarrow [\psi]_{\alpha}(\bar{x}))$$

Since $[\varphi]_{\beta}$ and $[\psi]_{\alpha}$ are L_U -formulas, the desired result follows by conservativity.

Theorem 2. Let Θ be a deterministic L_U -theory, and let $\alpha(x)$ and $\beta(x)$ be L_U -formulas such that

$$\Theta \vDash \exists ! x(Tx \land \alpha(x)) \land \exists ! x(Tx \land \beta(x)) \land \exists x \exists y(\alpha(x) \land \beta(y) \land x < y)$$

Then, for any L_U -formula φ , there is an L_U -formula ψ such that

$$\Theta \vDash \forall \bar{x}([\varphi]_{\beta}(\bar{x}) \leftrightarrow [\psi]_{\alpha}(\bar{x}))$$

Proof. Let Θ be a deterministic L_U -theory, and let $\alpha(x)$ and $\beta(x)$ be L_U -formulas such that

$$(2) \qquad \Theta \vDash \exists ! x(Tx \land \alpha(x)) \land \exists ! x(Tx \land \beta(x)) \land \exists x \exists y(\alpha(x) \land \beta(y) \land x < y)$$

For each *n*-place predicate $P \in L$, introduce new n - 1-place predicates P_{α} and P_{β} . Let $L_{\alpha} := \{P_{\alpha} : P \in L\}$ and $L_{\beta} := \{P_{\beta} : P \in L\}$. Moreover, introduce two new constants c_{α} and c_{β} , and let $L_T^+ := L_T \cup \{c_{\alpha}, c_{\beta}\}$. Let Θ^+ be the result of extending Θ with

(3) a.
$$\forall x(x = c_{\alpha} \leftrightarrow Tx \land \alpha(x))$$

b. $\forall x(x = c_{\beta} \leftrightarrow Tx \land \beta(x))$

and the following axioms for each $P \in L$:

(4) a.
$$\forall \bar{x} [P_{\alpha} \bar{x} \leftrightarrow \exists y (Ty \land \alpha(y) \land P \bar{x}y)]$$

b. $\forall \bar{x} [P_{\beta} \bar{x} \leftrightarrow \exists y (Ty \land \beta(y) \land P \bar{x}y)]$

Clearly, Θ^+ is a conservative extension of Θ with respect to L_U . Let \mathcal{M} and \mathcal{M}' be models of Θ^+ with the same domain and the same interpretation of L_T^+ , and let $a, b \in T^{\mathcal{M}}$ and $a', b' \in T^{\mathcal{M}'}$ be the unique points in time satisfying $\alpha(x)$ and $\beta(x)$ in \mathcal{M} and \mathcal{M}' , respectively. Since $c_{\alpha}, c_{\beta} \in L_T^+$, it follows by (3) that a = a' and b = b'. Moreover, $a <^{\mathcal{M}} b$. Assume that $P_{\alpha}^{\mathcal{M}} = P_{\alpha}^{\mathcal{M}'}$ for all $P \in L$. By (4-a), it follows that $P^{\mathcal{M},a} = P^{\mathcal{M}',a}$ for all $P \in L$. Since \mathcal{M} and \mathcal{M}' are models of Θ , and Θ is deterministic, it follows that $P^{\mathcal{M},b} = P^{\mathcal{M}',b}$ for all $P \in L$. Hence, by (4-b), $P_{\beta}^{\mathcal{M}} = P_{\beta}^{\mathcal{M}'}$ for all $P \in L$. By Beth's definability theorem, there is an $L_T^+ \cup L_{\alpha}$ -formula π for each $P \in L$ such that

$$\Theta^+ \vDash \forall \bar{x} [P_\beta \bar{x} \leftrightarrow \pi(\bar{x})]$$

Clearly, for any $L_T^+ \cup L_{\alpha}$ -formula π , there is an L_U -formula ψ such that

$$\Theta^+ \vDash \forall \bar{x}(\pi(\bar{x}) \leftrightarrow [\psi]_\alpha(\bar{x}))$$

It follows that, for each L_U -formula φ , there is an L_U -formula ψ such that

$$\Theta^+ \vDash \forall \bar{x}([\varphi]_\beta(\bar{x}) \leftrightarrow [\psi]_\alpha(\bar{x}))$$

The desired result follows by conservativity.